46 research outputs found

    SIN001, drug for improvement of the embryonic implantation. Study of endometrial markers in clinical regulatory phase

    Get PDF
    Motivation:The study of endometrial receptivity has opened a new approach in the world of assisted reproduction, allowing the development of genetic tests, drugs and techniques that increase the rate of “child at home” mainly in couples who are attending to assisted reproduction programmes. Genetic tests about endometrial receptivity allow to evaluate the “window of implantation” (WOI) estimating the best moment for successful embryo transfer, decreasing the maternal factor. Due to the progress of these tests it can be considered if drugs like SIN001, improve endometrial receptivity in clinical phase. Methods:Through the endometrial biopsy before and after the intake of the drug SIN001 of 32 women in a natural cycle, the transcriptome is analysed, after extracting RNA, using quantitative PCR in microfluidics technique (Fluidigm technology). It consists of a dynamic array where the samples and the primers of the genes, in this case 192 markers previously described and related to the endometrial receptivity, are combined in a real-time PCR. A pre-treatment and treatment histological determination can be obtained due to the endometrial biopsy, for the expression and localization of some of the proteins that have been defined as important in endometrial receptivity.Results: In the preclinical in vitro tests obtained with the drug SIN001, the toxicity was dismissed and the adhesion increase was observed in cell culture models and in primary cultures models of endometrial epithelium. In this clinical phase is expected to improve the WOI in women after the intake of the drug and therefore the embryo implantation. In addition, to evaluate the receptive status of the women with the endometrial receptivity test and also it is expected to establish the expression profile of the 192 genes in the transcriptomics, as well as an evaluation of the proteins obtained in immunohistochemistry.Conclusions: Currently there are no drugs improving embryo implantation, this means that the discovery of a substance like SIN001, significantly increase the probability of success in reproduction clinics, since the drug is expected to cover three phases: (i) endometrial preparation; (ii) embryo implantation; (iii) placentation and prevention of spontaneous miscarriage. Therefore, the next steps to scale up the drug to market would be to increase the cohort of the study and studies focusing on the action mechanism of the drug SIN001 in endometrium

    Producción de BeNToglucerasa para el tratamiento no invasivo de la enfermedad de Gaucher

    Get PDF
    La enfermedad de Gaucher es una enfermedad rara de almacenamiento lisosomal provocada por mutaciones en el gen que codifica para la proteína beta-glucocerebrosidasa que cataliza la hidrólisis del glicolípido glucocerebrósido a glucosa y ceramida. Las personas que padecen dicha enfermedad son incapaces de descomponer el glucocerebrósido, por lo que permanece almacenado dentro de los lisosomas.El sindrome de Gaucher se clasifica en tres tipos, dos de los cuales, el tipo II o subaguda y tipo III crónica, son de carácter neuropático y además son menos frecuentes.Actualmente las terapias están dirigidas a eliminación de sustrato o terapias de reemplazo enzimático, siendo esta última la que más éxito reporta. Se suministra la enzima exógenamente vía intravenosa y reduce algunos síntomas como la hepatoesplenomegalia. Por otro lado, presenta algunos inconvenientes, como la incapacidad de atravesar la barrera hematoencefálica, lo que la hace ineficaz para los tipos neuropáticos. Además, su administración ha de ser continua y frecuente por su corta vida media en sangre.Bionaturis pretende conseguir la administración del fármaco vía oral y atravesar la barrera hematoencefálica, a través de la acumulación de distintas versiones de glucocerebrosidasa humana mejorada utilizando la plataforma FLYLIFE y secuencias estabilizadoras y promotoras del cruce de barreras biológicas.Partiendo de la síntesis de secuencias de nucleótidos de las distintas versiones de glucocerebrosidasa, procedimos a clonarlas en vectores de expresión baculovíricos, que se utilizaron para insertar los constructos en el Master Viral DNA de Bionaturis y crear baculovirus recombinantes de trabajo o Working Viral Banks (WVB). Para ello se realizó la co-transfección de células de insectos (sf21) y se obtuvieron los baculovirus con la secuencia de interés por  recombinación homóloga. Tras la amplificación de los stocks de baculovirus, procedimos a la caracterización de los WVBs, mediante tests de identidad, pureza y potencia que incluye el análisis de la expresión del producto de interés en células de insecto. Los resultados han sido positivos y muestran la presencia de glucocerebrosidasa recombinante en sedimento celular pero no en el sobrenadante de los cultivos infectados. Nuestros siguientes pasos van  enfocados al test de expresión en larvas de lepidópteros y posterior purificación de los  productos de interés

    Apoptotic microtubules delimit an active caspase free area in the cellular cortex during the execution phase of apoptosis

    Get PDF
    Apoptotic microtubule network (AMN) is organized during apoptosis, forming a cortical structure beneath plasma membrane, which has an important role in preserving cell morphology and plasma membrane permeability. The aim of this study was to examine the role of AMN in maintaining plasma membrane integrity during the execution phase of apoptosis. We demonstrated in camptothecin-induced apoptosis in H460 cells that AMN delimits an active caspase free area beneath plasma membrane that permits the preservation of cellular cortex and transmembrane proteins. AMN depolymerization in apoptotic cells by a short exposure to colchicine allowed active caspases to reach the cellular cortex and cleave many key proteins involved in plasma membrane structural support, cell adhesion and ionic homeostasis. Cleavage of cellular cortex and plasma membrane proteins, such as a-spectrin, paxilin, focal adhesion kinase (FAK), E-cadherin and integrin subunit b4 was associated with cell collapse and cell detachment. Otherwise, cleavage-mediated inactivation of calcium ATPase pump (PMCA-4) and Naþ/Ca2þ exchanger (NCX) involved in cell calcium extrusion resulted in calcium overload. Furthermore, cleavage of Naþ/Kþ pump subunit b was associated with altered sodium homeostasis. Cleavage of cell cortex and plasma membrane proteins in apoptotic cells after AMN depolymerization increased plasma permeability, ionic imbalance and bioenergetic collapse, leading apoptotic cells to secondary necrosis. The essential role of caspase-mediated cleavage in this process was demonstrated because the concomitant addition of colchicine that induces AMN depolymerization and the pan-caspase inhibitor z-VAD avoided the cleavage of cortical and plasma membrane proteins and prevented apoptotic cells to undergo secondary necrosis. Furthermore, the presence of AMN was also critical for proper phosphatidylserine externalization and apoptotic cell clearance by macrophages. These results indicate that AMN is essential to preserve an active caspase free area in the cellular cortex of apoptotic cells that allows plasma membrane integrity during the execution phase of apoptosis

    Mitochondrial dysfunction and mitophagy activation in blood mononuclear cells of fibromyalgia patients: implications in the pathogenesis of the disease

    Get PDF
    This is an open access article distributed under the terms of the Creative Commons Attribution License.[Introduction]: Fibromyalgia is a chronic pain syndrome with unknown etiology. Recent studies have shown some evidence demonstrating that oxidative stress may have a role in the pathophysiology of fibromyalgia. However, it is still not clear whether oxidative stress is the cause or the effect of the abnormalities documented in fibromyalgia. Furthermore, the role of mitochondria in the redox imbalance reported in fibromyalgia also is controversial. We undertook this study to investigate the role of mitochondrial dysfunction, oxidative stress, and mitophagy in fibromyalgia. [Methods]: We studied 20 patients (2 male, 18 female patients) from the database of the Sevillian Fibromyalgia Association and 10 healthy controls. We evaluated mitochondrial function in blood mononuclear cells from fibromyalgia patients measuring, coenzyme Q10 levels with high-performance liquid chromatography (HPLC), and mitochondrial membrane potential with flow cytometry. Oxidative stress was determined by measuring mitochondrial superoxide production with MitoSOX™ and lipid peroxidation in blood mononuclear cells and plasma from fibromyalgia patients. Autophagy activation was evaluated by quantifying the fluorescence intensity of LysoTracker™ Red staining of blood mononuclear cells. Mitophagy was confirmed by measuring citrate synthase activity and electron microscopy examination of blood mononuclear cells. [Results]: We found reduced levels of coenzyme Q10, decreased mitochondrial membrane potential, increased levels of mitochondrial superoxide in blood mononuclear cells, and increased levels of lipid peroxidation in both blood mononuclear cells and plasma from fibromyalgia patients. Mitochondrial dysfunction was also associated with increased expression of autophagic genes and the elimination of dysfunctional mitochondria with mitophagy. [Conclusions]: These findings may support the role of oxidative stress and mitophagy in the pathophysiology of fibromyalgia.This work was supported by grants FIS PI080500 and FIS EC08/00076, Ministerio de Sanidad, Spain. The authors dedicate this manuscript to FM patients and AFIBROSE (Asociación de Fibromialgia de Sevilla) for their unconditional help.Peer Reviewe

    Coenzyme Q10 therapy

    Get PDF
    For a number of years, coenzyme Q10 (CoQ10) was known for its key role in mitochondrial bioenergetics; later studies demonstrated its presence in other subcellular fractions and in blood plasma, and extensively investigated its antioxidant role. These 2 functions constitute the basis for supporting the clinical use of CoQ10. Also, at the inner mitochondrial membrane level, CoQ10 is recognized as an obligatory cofactor for the function of uncoupling proteins and a modulator of the mitochondrial transition pore. Furthermore, recent data indicate that CoQ 10 affects the expression of genes involved in human cell signaling, metabolism and transport, and some of the effects of CoQ10 supplementation may be due to this property. CoQ10 deficiencies are due to autosomal recessive mutations, mitochondrial diseases, aging-related oxidative stress and carcinogenesis processes, and also statin treatment. Many neurodegenerative disorders, diabetes, cancer, and muscular and cardiovascular diseases have been associated with low CoQ10 levels as well as different ataxias and encephalomyopathies. CoQ10 treatment does not cause serious adverse effects in humans and new formulations have been developed that increase CoQ10 absorption and tissue distribution. Oral administration of CoQ10 is a frequent antioxidant strategy in many diseases that may provide a significant symptomatic benefit.This work was supported by grants (FIS PI10/00543, FIS EC08/00076) from the Ministerio de Sanidad, Spain, and Fondo Europeo de Desarrollo Regional (FEDER-Unión Europea); Servicio Andaluz de Salud-Junta de Andalucía (SAS 111242); Proyecto de Investigación de Excelencia de la Junta de Andalucía (CTS-5725); and by AEPMI (Asociación de Enfermos de Patología Mitocondrial), FEEL (Fundación Española de Enfermedades Lisosomales) and ALBA Andalucía (Federación Andaluza de Fibromialgia y Fatiga Crónica).Peer Reviewe

    Stabilization of apoptotic cells: generation of zombie cells

    Get PDF
    This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 3.0 Unported License.Apoptosis is characterized by degradation of cell components but plasma membrane remains intact. Apoptotic microtubule network (AMN) is organized during apoptosis forming a cortical structure beneath plasma membrane that maintains plasma membrane integrity. Apoptotic cells are also characterized by high reactive oxygen species (ROS) production that can be potentially harmful for the cell. The aim of this study was to develop a method that allows stabilizing apoptotic cells for diagnostic and therapeutic applications. By using a cocktail composed of taxol (a microtubule stabilizer), Zn2+ (a caspase inhibitor) and coenzyme Q10 (a lipid antioxidant), we were able to stabilize H460 apoptotic cells in cell cultures for at least 72 h, preventing secondary necrosis. Stabilized apoptotic cells maintain many apoptotic cell characteristics such as the presence of apoptotic microtubules, plasma membrane integrity, low intracellular calcium levels and mitochondrial polarization. Apoptotic cell stabilization may open new avenues in apoptosis detection and therapy.This work was supported by FIS PI10/00543 grant, Ministerio de Sanidad, Spain, and Fondo Europeo de Desarrollo Regional (FEDER-Unión Europea), SAS 111242 grant, Servicio Andaluz de Salud-Junta de Andalucía, Proyecto de Investigación de Excelencia de la Junta de Andalucía CTS-5725, BFU2012-38208 and by AEPMI (Asociación de Enfermos de Patología Mitocondrial).Peer Reviewe

    The Apoptotic Microtubule Network During the Execution Phase of Apoptosis

    Get PDF
    Apoptosis is a regulated energy-dependent process of cell death characterized by specific morphological and biochemical features in which caspase activation has a central role. During apoptosis, cells undergo characteristic morphological rearrangements in which the cytoskeleton participates actively. From a historical point of view, this reorganization has been assigned mainly to actinomyosin ring contraction with microtubule and intermediate filaments, both reported to be depolymerized at early stages of apoptosis. However, recent results have shown that the microtubule cytoskeleton is reformed during the execution phase of apoptosis, forming an apoptotic microtubule network (AMN). AMN is closely associated with the plasma membrane, forming a cortical ring or cellular “cocoon.” Apoptotic microtubules’ reorganization has been reported in many cell types and under many apoptotic inducers. Recently, it has been proposed that AMN is essential for preserving plasma membrane permeability and cell morphology during the execution phase of apoptosis. Apoptotic microtubules’ depolymerization leads cells to secondary necrosis and the release of toxic intracellular contents that can harm surrounding cells and initiate inflammation. Therefore, microtubules’ reorganization in physiological apoptosis during development and in the adult organism or in pathological apoptosis induced by anticancer treatments or chronic inflammation is essential for tissue homeostasis, preventing cell damage and inflammation

    Apoptotic cells subjected to cold/warming exposure disorganize apoptotic microtubule network and undergo secondary necrosis

    Get PDF
    Apoptotic microtubule network (AMN) is organized during apoptosis, forming a cortical structure beneath the plasma membrane which plays a critical role in preserving cell morphology and plasma membrane integrity. The aim of this study was to examine the effect of cold/warming exposure on apoptotic microtubules and plasma membrane integrity during the execution phase of apoptosis. We demonstrated in camptothecin-induced apoptotic H460 cells that cold/warming exposure disorganized apoptotic microtubules and allowed the access of active caspases to the cellular cortex and the cleavage of essential proteins in the preservation of plasma membrane permeability. Cleavage of cellular cortex and plasma membrane proteins, such as ¿-spectrin, paxilin, focal adhesion kinase and calcium ATPase pump (PMCA-4) involved in cell calcium extrusion resulted in increased plasma permeability and calcium overload leading apoptotic cells to secondary necrosis. The essential role of caspase-mediated cleavage in this process was demonstrated because the addition of the pan-caspase inhibitor z-VAD during cold/warming exposure that induces AMN depolymerization avoided the cleavage of cortical and plasma membrane proteins and prevented apoptotic cells to undergo secondary necrosis. Likewise, apoptotic microtubules stabilization by taxol during cold/warming exposure also prevented cellular cortex and plasma membrane protein cleavage and secondary necrosis. Furthermore, microtubules stabilization or caspase inhibition during cold/warming exposure was also critical for proper phosphatidylserine externalization and apoptotic cell clearance by macrophages. These results indicate that cold/warming exposure of apoptotic cells induces secondary necrosis which can be prevented by both, microtubule stabilization or caspase inhibition.This work was supported by FIS PI10/00543 Grant, FIS EC08/00076 Grant, Ministerio de Sanidad, Spain and Fondo Europeo de Desarrollo Regional (FEDER-Unión Europea), SAS 111242 Grant, Servicio Andaluz de Salud-Junta de Andalucía, Proyecto de Investigación de Excelencia de la Junta de Andalucía CTS-5725, and by Asociación de Enfermos de Patología Mitocondrial (AEPMI).Peer Reviewe

    Apoptotic microtubules delimit an active caspase free area in the cellular cortex during the execution phase of apoptosis

    Get PDF
    This work is licensed under the Creative Commons Attribution-NonCommercial-No Derivative Works 3.0 Unported License.Apoptotic microtubule network (AMN) is organized during apoptosis, forming a cortical structure beneath plasma membrane, which has an important role in preserving cell morphology and plasma membrane permeability. The aim of this study was to examine the role of AMN in maintaining plasma membrane integrity during the execution phase of apoptosis. We demonstrated in camptothecin-induced apoptosis in H460 cells that AMN delimits an active caspase free area beneath plasma membrane that permits the preservation of cellular cortex and transmembrane proteins. AMN depolymerization in apoptotic cells by a short exposure to colchicine allowed active caspases to reach the cellular cortex and cleave many key proteins involved in plasma membrane structural support, cell adhesion and ionic homeostasis. Cleavage of cellular cortex and plasma membrane proteins, such as α-spectrin, paxilin, focal adhesion kinase (FAK), E-cadherin and integrin subunit β4 was associated with cell collapse and cell detachment. Otherwise, cleavage-mediated inactivation of calcium ATPase pump (PMCA-4) and Na(+)/Ca(2+) exchanger (NCX) involved in cell calcium extrusion resulted in calcium overload. Furthermore, cleavage of Na(+)/K(+) pump subunit β was associated with altered sodium homeostasis. Cleavage of cell cortex and plasma membrane proteins in apoptotic cells after AMN depolymerization increased plasma permeability, ionic imbalance and bioenergetic collapse, leading apoptotic cells to secondary necrosis. The essential role of caspase-mediated cleavage in this process was demonstrated because the concomitant addition of colchicine that induces AMN depolymerization and the pan-caspase inhibitor z-VAD avoided the cleavage of cortical and plasma membrane proteins and prevented apoptotic cells to undergo secondary necrosis. Furthermore, the presence of AMN was also critical for proper phosphatidylserine externalization and apoptotic cell clearance by macrophages. These results indicate that AMN is essential to preserve an active caspase free area in the cellular cortex of apoptotic cells that allows plasma membrane integrity during the execution phase of apoptosis.This work was supported by FIS PI10/00543 grant, FIS EC08/00076 grant, Ministerio de Sanidad, Spain and Fondo Europeo de Desarrollo Regional (FEDER-Unión Europea), SAS 111242 grant, Servicio Andaluz de Salud Junta de Andalucía, Proyecto de Investigación de Excelencia de la Junta de Andalucía CTS-5725, and by AEPMI (Asociación de Enfermos de Patología Mitocondrial).Peer reviewe

    Critical role of AMP-activated protein kinase in the balance between mitophagy and mitochondrial biogenesis in MELAS disease

    Get PDF
    MELAS syndrome is a mitochondrial disorder that is caused mainly by the m.3243A > G mutation in mitochondrial DNA. Here, we report on how the severity of pathophysiological alterations is differently expressed in fibroblasts derived from patients with MELAS disease. We evaluated mitophagy activation and mitochondrial biogenesis which are the main mechanisms regulating the degradation and genesis of mitochondrial mass in MELAS fibroblasts and transmitochondrial cybrids. Our results suggest a critical balance between mitophagy and mitochondrial biogenesis which leads to the expression of different degrees of pathological severity among MELAS fibroblast cell lines according to their heteroplasmy load and the activation of AMP-activated protein kinase (AMPK). AMPK-activators such as 5-aminoimidazole-4-carboxamide 1-β-D-ribofuranoside (AICAR) or coenzyme Q10 (CoQ) increased peroxisome proliferator-activated receptor alpha (PGC-1α) nuclear translocation, mitochondrial biogenesis, antioxidant enzyme system response, autophagic flux and improved pathophysiological alterations in MELAS fibroblasts with the most severe phenotype. Our findings support the hypothesis that mitochondrial biogenesis, increased antioxidant response and autophagy clearance serve as compensatory mechanisms in response to mitophagic degradation of dysfunctional mitochondria and point out that AMPK is an important player in this balance.This work was supported by FIS PI13/00129 grant, Ministerio de Sanidad, Spain and Fondo Europeo de Desarrollo Regional (FEDER-Unión Europea), Proyecto de Investigación de Excelencia de la Junta de AndalucíaCTS-5725, and by AEPMI (Asociación de Enfermos de Patología Mitocondrial).Peer Reviewe
    corecore